Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrzej Kochel

Faculty of Chemistry, University of Wrocaw, F. Joliot Curie St.14, 50-383 Wrocaw, Poland

Correspondence e-mail:
andrzej@wchuwr.chem.uni.wroc.pl

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.028$
$w R$ factor $=0.057$
Data-to-parameter ratio $=35.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2,2'-Bipyrimidinium hexachlororhenate(IV) dihydrate

In the title compound, $\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}\right)\left[\mathrm{ReCl}_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the Re atom occupies an inversion centre and is octahedrally coordinated by chloride anions. The cation also has an inversion centre. Various $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions help to stabilize the crystal packing.

Comment

The title complex, (I) (Fig. 1), is a salt-like rhenium(IV)containing hydrate. The $\mathrm{Re}^{\mathrm{IV}}$ cation (electron configuration $5 d^{3}$) occupies an inversion centre and bonds to six chloride ions in a fairly regular octahedral geometry (Table 1). The $\mathrm{Re}-\mathrm{Cl}$ bond lengths are similar to those found in other hexachlororhenates (Figgis et al., 1961; Kochel, 2004). The 2,2'bipyrimidinium cation has an inversion centre at the mid-point of the $\mathrm{C}-\mathrm{C}$ bond linking the two rings, and shows no unusual features.

(I)

In the crystal structure of (I), various types of hydrogen
bonds (Table 2) link the cations, anions and water molecules

Figure 1

View of the components of (I), showing 30% displacement ellipsoids (arbitrary spheres for the H atoms). [Symmetry codes: (i) $-x,-y,-z$; (ii) $1-x,-y, 1-z$.]

Received 9 March 2005 Accepted 21 March 2005
Online 31 March 2005

Figure 2
The crystal packing in (I), with H atoms omitted for clarity.
together. In the crystal packing, two characteristic types of arrangement of molecules may be discerned: in the [010] and [001] directions, a layered arrangement (alternating anions and cations) is observed, while in the [100] direction, anions arrange themselves into columns inside troughs formed of cations and water molecules, and the whole is surrounded by a network of hydrogen bonds. The shortest intermetallic distances in (I) are $\mathrm{Re} \cdots \mathrm{Re}^{\mathrm{i}}=7.941$ (2) \AA and $\mathrm{Re} \cdots \mathrm{Re}^{\mathrm{ii}}=$ 7.825 (2) \AA [symmetry codes: (i) $x-1, y, z$; (ii) $-x, \frac{1}{2}+y$, $\left.-\frac{1}{2}-z\right]$.

Experimental

$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ReCl}_{6}(0.1 \mathrm{~g})$ was dissolved in water $(20 \mathrm{ml})$ with concentrated $\mathrm{HCl}(2 \mathrm{ml})$ and the mixture was heated under reflux at 340 K . After $30 \mathrm{~min}, 2,2^{\prime}$-bipyrimidine (0.15 g) dissolved in water (50 ml) was added. The mixture was heated for a further 3 h . After cooling, the yellow precipitate was filtered off and washed with ethanol and diethyl ether. Crystals of (I) suitable for X-ray study were obtained by slow evaporation of an aqueous solution of the yellow precipitate. IR (KBr, $\nu \mathrm{cm}^{-1}$): 3446, 3068, 2576, 2034, 1617, 1562, 1508, 1427, 1404, 1338, 1281, 1130, 1056, 995, 984, 826, 736, 735, 670, 451, 561, 458, 301, 169, 126. Analysis calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{Cl}_{6} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Re}$: C 16.14, H $2.03, \mathrm{~N}$ 9.41, O 5.37, Cl 35.74, Re 31.29\%; found: C 15.12 , H 1.90, N 9.15, Cl 35.30%.

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}\right)\left[\mathrm{ReCl}_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=595.13$
Monoclinic, $P 2_{1} / c$
$a=7.941$ (2) \AA 。
$b=12.199$ (2) \AA
$c=9.804$ (2) A
$\beta=118.18$ (3) ${ }^{\circ}$
$V=837.2(3) \AA^{3}$
$Z=2$
$D_{x}=2.361 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2760
reflections
$\theta=3.2-36.5^{\circ}$
$\mu=8.22 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, yellow
$0.12 \times 0.10 \times 0.05 \mathrm{~mm}$

Data collection

Kuma KM4/CCD diffractometer ω scans
Absorption correction: numerical
(CrysAlis REDin KM4CCD
Software; Oxford Diffraction, 2004)
$\mathrm{T}_{\min }=0.567, \mathrm{~T}_{\max }=0.897$
14616 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.057$
$S=1.07$
3711 reflections
106 parameters
3711 independent reflections
2860 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=36.5^{\circ}$
$h=-13 \rightarrow 12$
$k=-20 \rightarrow 16$
$l=-14 \rightarrow 16$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0255 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=1.75 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-2.24 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Re}-\mathrm{Cl} 1$	$2.3681(9)$	$\mathrm{Re}-\mathrm{Cl} 3$	$2.3601(8)$
$\mathrm{Re}-\mathrm{Cl} 2$	2.3553 (8)		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}$	$0.82(5)$	$1.83(5)$	$2.627(4)$	$165(5)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N}^{\mathrm{i}}$	$0.82(5)$	$2.40(4)$	$2.749(4)$	$107(4)$
$\mathrm{O}-\mathrm{H} 1 W \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.83(5)$	$2.48(5)$	$3.183(3)$	$144(4)$
$\mathrm{O}-\mathrm{H} 1 W \cdots \mathrm{Cl} 1^{\text {iii }}$	$0.83(5)$	$2.77(5)$	$3.340(3)$	$127(4)$
$\mathrm{O}-\mathrm{H} 2 W \cdots \mathrm{Cl} 3^{\mathrm{iv}}$	$0.82(6)$	$2.72(6)$	$3.340(3)$	$133(4)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.93	2.81	$3.670(4)$	154
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cl} 2^{\mathrm{v}}$	0.93	2.74	$3.595(4)$	153

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iv) $1+x, \frac{1}{2}-y, \frac{1}{2}+z ;$ (v) $-x,-y, 1-z$.

H atoms bonded to C atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and refined as riding with the constraint $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\text {eq }}$ (carrier) applied. H atoms associated with N and O atoms were located in difference maps and then freely refined. The highest peak and deepest hole are located $0.88 \AA$ from atom Cl 1 and $0.73 \AA$ from Re , respectively.

Data collection: KM4CCD Software (Oxford Diffraction, 2004); cell refinement: KM4CCD Software; data reduction: KM4CCD Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Figgis. B. N., Lewis. J. \& Mabbs. F. E. (1961). J. Chem. Soc. pp. 3138-3143. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Kochel, A. (2004), Acta Cryst. E60, m859-m860.
Oxford Diffraction (2004). KM4CCD. Oxford Diffraction, Wrocław, Poland. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

